Symmetric and alternating powers of Weil representations of finite symplectic groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing Symmetric Powers of Certain Modular Representations of Cyclic Groups

For a prime number p, we construct a generating set for the ring of invariants for the p+1 dimensional indecomposable modular representation of a cyclic group of order p. We then use the constructed invariants to describe the decomposition of the symmetric algebra as a module over the group ring, confirming the Periodicity Conjecture of Ian Hughes and Gregor Kemper for this case.

متن کامل

Prime power degree representations of the symmetric and alternating groups

In 1998, the second author raised the problem of classifying the irreducible characters of Sn of prime power degree. Zalesskii proposed the analogous problem for quasi-simple groups, and he has, in joint work with Malle, made substantial progress on this latter problem. With the exception of the alternating groups and their double covers, their work provides a complete solution. In this article...

متن کامل

finite groups which are the products of symmetric or alternating groups with $l_3(4)$

in this paper‎, ‎we determine the simple groups $g=ab$‎, ‎where $b$ is isomorphic to $l_{3}(4)$ and $a$ isomorphic to an alternating or a symmetric group on $ngeq5$‎, ‎letters‎.

متن کامل

compactifications and representations of transformation semigroups

this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...

15 صفحه اول

conjectures on the normal covering number of finite symmetric and alternating groups

let $gamma(s_n)$ be the minimum number of proper subgroups‎ ‎$h_i, i=1‎, ‎dots‎, ‎l $ of the symmetric group $s_n$ such that each element in $s_n$‎ ‎lies in some conjugate of one of the $h_i.$ in this paper we‎ ‎conjecture that $$gamma(s_n)=frac{n}{2}left(1-frac{1}{p_1}right)‎ ‎left(1-frac{1}{p_2}right)+2,$$ where $p_1,p_2$ are the two smallest primes‎ ‎in the factorization of $ninmathbb{n}$ an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES

سال: 2018

ISSN: 2304-7895,2304-7909

DOI: 10.21915/bimas.2018405